1. Find the area bounded by the curve; $y = \sqrt{4 - x}$, x-axis and y-axis.
2. Find the area bounded by the curves; $y = x^2$ and $x^2 + y^2 = 2$ above x-axis.
3. Find the area bounded by; $y = x^2 - 4$ and $x + y = 2$.
4. Find the area bounded by the circle; $x^2 + y^2 = a^2$.
5. Find the area bounded by the curves; $x^2 + y^2 = 4a^2$ & $y^2 = 3ax$.
6. Find the area bounded by hyperbola $x^2 - y^2 = a^2$ and the line $x = 2a$.
7. Find the area bounded by parabola $y = x^2$, x-axis and the tangent to the parabola at (1,1).
8. Find the area of the portion of the circle $x^2 + y^2 = 64$ which is exterior to the parabola $y^2 = 12x$.
9. Draw the rough sketch of the curve $y = \left|\frac{1}{x}\right|$ and evaluate the area bounded by the curve and the x-axis between $x = -4$ and $x = 2$.
10. Using integration find the area of the triangular region with vertices (1,0), (2,2) and (3,1)
11. Calculate the area of the region enclosed between the circles $x^2 + y^2 = 16$ and $(x + 4)^2 + y^2 = 16$.
12. Find the area of the region bounded by the curve $y = x^2 + 2$ and the lines $y = x$, $x = 0$ and $x = 3$.
13. Find the area of the region $\{(x, y): x^2 + y^2 \leq 1 \leq x + y\}$
14. Using integration, find the area of the region $\{(x, y): y^2 \leq 4x, 4x^2 + 4y^2 \leq 9\}$
15. Using integration, find the area of the region enclosed between the circles; $x^2 + y^2 = 4$ and $(x - 2)^2 + y^2 = 4$.